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ABSTRACT

The network design problems studied in this paper are typically known in the Telecom-
munications literature as the Concentrator Location, Terminal Assignment and Termi-
nal Layout Problems. These are versions of well-known Operations Research models
such as Capacitated Location, Capacitated Assignment, Capacitated Minimum Span-
ning Tree, and Vehicle Routing. We describe two Simulated Annealing algorithms for
solving them and analyze the results obtained through computational testing.
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RESUME

Dans cet article, nous étudions des problémes connus dans le domaine des télécommu-
nications sous les noms de localisation de concentrateurs, d’allocation de terminaux et
d’agencement optimal de terminaux. Ce sont des versions de modéles trés connus de
la recherche opérationnelle: localisation, allocation et arbre de recouvrement minimum
en présence de capacités, et probleme de tournées de vehicules. Nous décrivons deux
algorithmes de recuit simulé pour résoudre ces problémes et analysons les résultats
obtenus.

1. INTRODUCTION.

Centralized telecommunications networks can be viewed as three-level hierarchical struc-
tures. At the first and lowest level we find input or output devices dispersed geographi-
cally at known locations. Although these devices are typically referred to as ‘terminalg’
they do not solely include office and home computers. Rather, a multitude of devices are
considered as terminal equipment. These include automatic teller machines for banking
transactions, touch-tone telephones for bill payment and student registration, and even
sensor devices such as certain alarm systemns that are able to notifv a security company
located kilometers away.

At the second level in the hierarchy are hne-concentrating devices with a hmited
number of possible sites for locating them. These sites may or may not coincide with
the terminal sites. These intermediate line-concentrating devices are generically referred
to as ‘concentrators’ and are connected to the central computer via high-speed lines such
as fiber optic cables. When designers can identify a cluster containing terminals that are
in close proximity to one another but relatively far away from the central computer, the
use of a line-concentrating device may be justified. These devices consolidate low-speed
lines into higher-speed lines, taking advantage of the economies of scale of cost versus
capacity’ ([21], p.179). When such a device can be placed in the vicinity of the cluster,
terminals can be connected to it rather than span the distances needed to link each
and every terminal to the central computer. Economies of scale dictate that in some
instances the savings such devices generate outweigh the additional costs (acquisition,
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installation, and connection) incurred. Finally, at the highest level of the hierarchy we
find a single element referred to as the central computer or simply the centre. Once
the number and locations of concentrators are known, and each terminal has been
assigned exclusively to one of the concentrators or to the central computer, we must
then determine how to lay out our lines so that every terminal will be connected into the
network. Both terminals and concentrators can either be connected in a ‘point-to-point’
or in a ‘multipoint’ fashion. ‘Point-to-point’ simply means that a terminal is directly
linked either to a concentrator or the central computer, and therefore does not share
a line with any other terminal in the network. For a concentrator, a ‘point-to-point’
connection implies a direct link to the central computer Alternatively, ‘multipoint’
lines, also known as ‘multidrop’ lines, consist of many terminals or concentrators linked
together onto one line in order to further lower costs.

A limit 1s typically imposed on the number of components that may share a com-
munication medium. This limit may be a directly imposed one due to reliability and
efficiency concerns. In fact, when the number of terminals on a line increases for ex-
ample, niot only does each terminal’s average access to the line decrease, but also, the
potential number of ‘downed’ terminals in the system rises in case of a link failure.
Furthermore, the number of components on a line is affected by the amount of data
exchanged via the line. This exchange of information consists of sending and receiving
messages over various types of medium intermittently with a transmission tirne usually
lasting no more than a few milliseconds. By knowing the average amount of data ex-
changed (traffic or weight) between each terminal and the central comnputer for example,
it becomes possible to interconnect these components at a minimal cost given the type
of network configuration desired and data transmission capabilities of the communica-
tion medium. When the data communication medium linking the network components
1s a line (a twisted-pair wire or a coaxial cable as opposed to radiated media such as
satellite or microwave technology), the cost of the network 1s a function of the aggregate
geographical distance the connection links must span in order for each terminal to be
able to exchange data with the central site.

In the following sections, the Centralized Telecommunications Network design prob-
lems will be addressed in further detail:

Concentrator Location -— Deciding how many concentrators to use, if any, and
where to place them.

Terminal Assignment — Determining what terminals will be serviced by each
concentrator, given that a concentrator is linited in the number of terminals and
amount of traffic that it can accommodate and assuming that the concentrator
locations are known.

Terminal Layout —- Selecting a cost effective way to connect the terminals to their
assigned concentrators with possible configurations being the star, the tree, the
bus, or the loop.

All three problems can be linked to other well-known Operations Research models.

In this paper, we present a software package that uses Simulated Anneahng in order
to solve the above problems. Qur goal was to produce the prototype of a Decision
Support System that has graphical capabilities, that is flexible and user-friendly, and
at the same time, that provides solutions that are better than heuristics commonly
used m telecommunications, such as the ADD, the DROP, and the Esat-Williams [13]
algorithms.  In Figure 9, an example of the graphical capabilities of the package is
presented.  Our prototype is designed to be a general-purpose application in which
accuracy has to be somewhat sacrificed for speed. But nevertheless, from a comparison
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with benchmark results, 1t does appear to be competitive with some of the best currently
available solution methods

2. THE EVOLUTION OF CENTRALIZED NETWORKS
AND THE EMERGENCE OF DESIGN STRATEGIES.
2.1. Line-Concentrating Devices

In their infancy. centralized telecommunications networks consisted of at most a few
hundred users located at close proximity to the central computer. Therefore, simply
connecting each terminal to the central computer in a point-to-point fashion could
effectively provide telecommunication services. In such configurations, each terminal
completely monopolized the low-capacity line connecting it to the centre. Today, a cen-
tralized network arranged in such a fashion is commonly said to have a ‘star’ topology.
As centralized networks evolved and expanded, the distances and the number of termi-
nals increased, making the star topology very costly. The introduction of line-sharing
techniques (multiplering and concentration) allowed designers to consolidate several low-
speed lines onto one higher-speed line. With such technology, cost savings were made
possible through economies of scale.

Multiplexing techniques divide a communication link into segments, each of which
can carry information coming from a separate source. Each segment is separated from
other segments by either time-division multiplering (where each data source is allocated
a time slot) or frequency-division multiplering (where data sources are transmitted over
different frequencies). One multiplexer at the ‘remote site’ allows multiple signals to
be transmitted over a single link by merging all incoming terminal lines into one line.
The combined data is then transmitted over this single link to the central computer,
also known as the host. At the host end, a second multiplexer separates the data and
distributes it among the outgoing terminal lines. Concentrators are also line sharing
devices and their primary function is the same as that of multiplexers. But unlike
multiplexers, concentrators are computers, and therefore, may have auxiliary storage
for use in support of an application, although in recent years, additional functions have
been added to multiplexers that have narrowed the differences between multiplexers and
concentrators. With today’s technology, the most noticeable difference that remains
between the two is that concentrators are used one at the time while multiplexers are
used in pairs. No matter what technique is chosen, both make line sharing transparent
to the users; in essence they create the illusion and feel of a point-to-point connection.
Throughout this paper, the word ‘concentrator’ will be used as a generic term for
consistency reasons.

A point was reached where terminals could be connected to a device relatively close-
by, and their low-speed lines consolidated onto one high-speed line that stretched from
the device to the central computer. Today’s literature typically refers 1o these types of
centralized networks as ‘Star-Star’, since not only is each terminal directly connected to
its respective concentrator, but also, each concentrator monopolizes the high-capacity
line linking it to the central computer. An illustration is given in Figure 1.

2.2, Multipoint Lines.

As centralized networks grew increasingly larger, even the Star-Star’s configuration cost
became prohibitively high Besides the costs associated with multiple spanning lines
across long distances, other considerations include the fact that human beings have
sigmficantly slower response times when compared to computers, typically resulting
in a very low utilization level of point-to-point connections. By grouping terminals
into @ multipoitit configuration; it became possible to take advantage of the low line
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Figure 1: A Star-Star topology

utilization that normally occurs in the star topology. Moreover, since the cost of a
network is directly related to the distance that all the lines must span in order to
interconnect all of its devices, allowing several devices 1o share a line could inevitably
lower costs. Furthermore, additional savings could be obtained from the decrease in
hardware that would be required. In fact, if modems were used, fewer of them would be
needed. Note that for each point-to-point connection one pair of modems is necessary,
while in multipoint configurations one modem per terminal plus one for each line at the
host (either the central computer or a concentrator) would suffice. And if the terminals
are sufficiently close in proximity, their individual modems can be replaced by a cluster
controller modem that supports several terminals at once. Generally, if the amount of
data exchanged between a terminal and the central site is quite large, or if the need
for security is high such as in certain government institutions, the terminal and the
host are typically connected in a point-to-point fashion, where the terminal completely
monopolizes the transmission line connecting it to the central site. However, if this is
not the case, economies of scale dictate that in order to take advantage of commercially
available lines whose maximum capacities are typically gauged with discrete values such
as 14400, 28800, 57600 bits per second, one connects several computers onto a ‘high-
capacity’ line, where the line is shared by several terminals at once.

As we have seen, designing a centralized computer network breaks down into figuring
out where to place the concentrators, what terminals to assign to them, and finally how
to arrange each cluster of assigned terminals onto multipoint lines. However, it must be
noted that the strategy of laying out multipoint lines does not only apply to terminals
assigned to a concentrator or the central computer. Concentrators themselves may be
considered as terminals that exchange very large amounts of information. In such a
case, the solution methods for the Terminal Layout Problem can also accommodate
designers who wish to place concentrators on multipoint high-speed lines that would
then be connected to the central computer, a strategy that would allow even further
cost reductions.

3. CENTRALIZED TELECOMMUNICATION
NETWORK DESIGN PROBLEMS.
3.1. Location — Allocation Problems.

The decision of where to place concentrators and how many of them to use depends
on the number of potential locations and the amount of traffic any concentrator can
handle. The limitation in the number of potential sites is typically due to security,
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accessibility, and environmental factors that restrict availability sometimes even when
the potential site coincides with an existing terminal location. Furthermore, assessing
the savings obtained by placing concentrators amid terminals both depends on the
concentrator locations and the terminal-concentrator assignments. Therefore, designers
must attempt to solve these problems jointly.

3.1.1. The Concentrator Location Problem.

The concentrator location problem is a version of the ‘ Capacitated Plant Location Prob-
lem’ in Operations Research. Given are network points (typically warehouses or mar-
kets) having demands for a certain comunodity and several sites for possible plant lo-
cations. There exists a fixed cost of opening a plant with a certain capacity at a given
site. The shipping costs from plant locations to demand points for each unit of the com-
modity are known. The problem is to determine at which sites to open plants so as to
minimize the total cost consisting of building and commodity shipment costs. For more
information on the Capacitated Plant Location Problem, we refer the reader to [25!.
Similarly, in the concentrator-location problemn there is a limited number of terminals
that can be accommodated by each concentrator. Boorstyn and Frank (6] identify this
limit as a function of ‘the limitations in buffer space, input ports, addressing structure,
to the finite capacity of the line from concentrator to central site which restricts the
amount of sraffic from all the assigned terminals that can be handled by each concen-
trator, and to the share of resources used by the polling scheme’ [p.31]. Because of the
complicated nature in which these factors combine to estimate the number of terminals
a concentrator can handle, research in this area usually assumes that the concentrator’s
capacity is already known. In the simple model, either one concentrator ‘size’ is consid-
ered where all concentrators are assumed to have the same capacity constraint or even
more simply capacities can be utterly overlooked. If a capacity constraint 1s imposed
on the concentrators then the sum of the weights (amount of data) associated with the
terminals must be smaller than or equal to the maximum transmitted data capacity
that the concentrator placed at a certain location can accept. A further restriction can
be imposed on the number of terminals that each concentrator can handle. Well-known
algorithms used for locating concentrators are the COM (Centre of Mass), ADD, and
DROP algorithms (see [21]. e.g.).

The COM algorithm tries to identify natural clusters of traffic. It begins by con-
sidering each terminal as a cluster by itself, and then, iterates to create new clusters
by combining existing clusters that are close to one another subject to some given con-
straints. Typically, these constraints include the desired weight of a cluster, a distance
limit between any two clusters to be combined, and the desired number of clusters. To
illustrate how the COM algorithin works consider the following:

Assume that for each terminal i, we have its coordinates (r;, y,) and weight w;. If
terminals ¢ and J are to be combined, the new cluster is represented by their centre of
mass. The weight wy of the newly created cluster k, is the sum of w, and w;. After
terminals ¢ and j are combined. they are eliminated from future consideration and
replaced by terminal k.

The ADD algorithm starts with all terminals connected to the central computer.
For every potential concentrator examined, the algorithm computes the savings that
can be made if it is added to the solution. The order in which the first and remaining
concentrators are selected is dictated by the largest savings obtained by individually
considering each concentrator into the solution and repeating the operation until no
additional savings can be found. Needless to say that the number of terminals assigned
to a concentrator will inevitably depend on the maximum capacity that the concentrator
cansupporty Thermajorlimitatiomof the: ADD algorithm comes from the fact that once

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyy



276 J-M. BOURJOLLY, D. TOMIUK AND G H.M. KAPANTOW

a concentrator is accepted 1t cannot be dropped in a subsequent iteration. The DROP
algorithm provides solutions that are comparable in quality to those obtained by the
ADD. It starts by considering that all concentrators are in use. The algorithm then
evaluates the savings obtained by dropping each concentrator one at a time. In the
case of no capacity constraints on the concentrators, each terminal that has become
isolated is simply connected to its nearest concentrator. The algorithm iterates until no
additional savings can be found.

In the presence of capacity constraints, evaluating the savings obtained from drop-
ping a concentrator also involves solving a terminal assignment problem. This is because
a terminal that has been disconnected from the network may not simply be connected
to the nearest of the remaining concentrators with the certainty that it will not violate
the concentrator’s capacity constraint. Therefore, in order to find the best savings from
say, n drops, at each iteration, the algorithm will need to execute n terminal assign-
ments, which will result in an extremely large running time for problems of moderate
to large size. Consequently, for larger capacitated problems, it is wiser to use the ADD
algorithm.

3.1.2. The Terminal Assignment Problem.

When a specific set J of concentrators have already been picked, the concentrator-
location problem is reduced to the terminal assignment problem. For example, this
situation occurs when a centralized network is already in place but needs to be ex-
panded with the addition of newly purchased terminals. As in the previous problem
description, cost is generally a function of the distance separating terminal 7; from con-
centrator C; but unlike what happens in the concentrator-location problem, the cost of
the concentrators can be ignored since 1t 1s actually a sunk cost. In the terminal assign-
ment problem, each terminal has a capacity w, associated to it and the sum of these
capacities must not surpass the allowable maximum capacity W; of the concentrator
they are assigned to. Furthermore, each concentrator may be limited by the maximum
number of terminals it can manage. Classical algorithins for solving this problem in-
clude the Original Greedy Algorithm, the Modified Greedy Algorithm with trade-off
« [2] and the Alternating Chain Algorithm [21].

The original greedy algorithm has the advantages that 1t 1s casy to mnplement and
requires little computing time. In the absence of capacity constraints, each terminal
is simply assigned to its nearest concentrator. However, when capacity constraints
are imposed, the algorithm tends to strand the terminals considered last which often
results in a poor quality solution. In fact, the original greedy algorithm has a strong
tendency to allocate the last few unassigned terminals to concentrators that are far
away. To alleviate this problem, the Modified Greedy Algorithin with trade-off o was
developed. The purpose of the modification is to give preference of connection to those
terminals that have the greatest negative impact on the final solution of the original
algorithm (referred to as c¢ritical terminals) because they are connected to their nearest
concentrator. Instead of relying on connection costs as a criterion for choosing the order
of assignments, the algorithm uses a trade-off function that biases the selection process
to give preference to the critical terminals. The value of the parameter (0 < a < 1)
reflects this preference, where a specified value of ‘0’ indicates the situation where no
preference is given to the critical terminals and would therefore provide a solution
identical to that of the original greedy algorithm. The Alternating Chain Algorithm
classifies as a semi-greedy algorithm. Contrarily to the algerithms discussed above, the
Alternating Chain Algorithm has the capability of reconsidering terminals that have
already been assigned. If after p terminal assignments the remaining terminals cannot
be assigned to one of the nearest concentrators without violating the capacity constraint,
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Figure 2: A multidrop line configured as a tree.

the algorithm will search for the least costly alternative for assigning the (p - 1)t
terminal to a nearby concentrator by relocating one or more of the terminals already
assigned to that concentrator. In other words, a number of previous assignment decisions
are retracted in order to ‘make room’ for the terminal under consideration. These
alternatives are referred to as ‘alternating chains’ or ‘augmented paths’. Each represents
a set of relocations that must be performed to fit the terminal being considered. The
alternating chain with the least cost is the one chosen.

3.1.3 Related Problems.  When capacity constraints are relaxed, the problem becomes
the uncapacitated facility location problem. The latter problem can further be modified
by assuming that the network designers know in advance the number of facilities to be
located. The problem then becomes the p-facility location problem. Moreover, ifd; =0
for all j, where d; is the cost of locating a facility as site j, we then have the p-median
problem. All of these problems are members of a family of location problems [23].

3.2. The Terminal Layout Problem.

The solutions to both problems stated above generate clusters of terminals associated
with each concentrator placed at a certain location. The next step in designing the
network is to find the manner in which the terminals in these clusters must be con-
nected to their assigned concentrators via some type of line configuration. Depending
on the topology desired, designing multidrop lines give rise to well-known combinatorial
optimization problems. The most common topologies are the tree (also referred to as
hierarchical), thebus, and the loop (also known as the ring). In section 2.1, we described
how concentrators and terminals were interconnected to create Star-Star centralized net-
works. The reader should note that with the use of multipoint line strategies, today’s
centralized networks have evolved and include combinations of concentrator-terminal
topologies such as the Star-Loop, the Tree-Tree, etc.

3.2.1 The Tree Topology. In a tree topology, each terminal node may have several
cascaded terminals attached to it. The tree network is illustrated in Figure 2.

Each node may have a certain number of child nodes ranging from 0 to a prede-
termined maximum. Each node in the subtree except for the root node must have a
parent node. Trees are typically inexpensive structures, but have the obvious disadvan-
tage that the failure of a single link may disconnect a considerable part of the network.
The problem of configuring a multipoint line as a tree topology is better known as the
Capacitated Minimum Spanning Tree (CMST) problem. The capacity constraint re-
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Figure 3: A Multidrop Line Using a Bus Topology
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Figure 4: A Multidrop line using a Loop Configuration.

lates to the fact that the lines carrying the data to and from the terminals have limited
transmission capabilities. Expressing this constraint can be done by considering that
terminals have a traffic requirement which can be depicted as w; (weight of terminal 1)
while a constraint Wmaz can be placed on the maximum weight any subtree (multipoint
line) can carry. This constraint indicates the maximum data transmission capabilities
of the commercially available lines being considered and indirectly limits the number
of terminals interconnected on any single line. It is possible to further constrain the
problem by incorporating a specified limit on the number of terminals any communi-
cation channel (i.e, line) can handle. In the telecommunications industry, hmiting the
number of terminals on a single line is not uncommon practice. In fact, a major disad-
vantage associated with using multipoint lines is an increase in the user’s waiting time
when too many terminals share the same medium. In addition, limiting the number of
terminals on the lines also minimizes the potentially detrimental effects associated with
the failure of a single line within the network. Well-known CMST Heuristics include
the Esai-Williams [13], the Modified Kruskal [6], and Modified Prim [15] algorithms.
Esaii and Williams [13] used the notion of a ‘trade-off value’ given by the formula
ti; = cij —Coi , where co; denotes the connection cost between terminal 7 and the central
site ‘0’, while ¢;; represents the connection cost from terminal ¢ to terminal j. Initially,
each component 7 is made up of terminal ¢ and the central site, in other words, terminals
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are considered to be directly connected to the central site in a star configuration. For
each pair of components (z, j), the trade-off is calculated representing the change in
cost due to removing the central link connecting component ¢ to ‘0’ and forming the
link (¢ — j). At each iteration, the algorithm finds the best trade-off t;; and merges
the component currently containing terminal ¢ with the component currently containing
terminal j. Before joining these components into one, the combined traffic is checked
to verify that it does not exceed the amount that one line can handle. If the link is
accepted and components ¢ and j are merged, if co; > co; then co; := cg; and if co; < co;
then cg; := co;. The algorithm stops when no additional savings can be obtained by
combining components together.

The Modified Kruskal Algorithm 6] begins by sorting all the links (least expensive
first). The algorithm then traverses the list, one link at a time, evaluating whether each
link can be performed without violating the line capacity constraint. The algorithm
offers worse results than the Esai-Williams algorithm for comparable CPU times. The
Modified Prim algorithm {15] begins by assuming that the concentrator is the only node
in the tree. It then finds the “out-of-tree’ node that is the nearest to the tree and connects
it into the tree The algorithm then proceeds to update the distance to the tree for all
remaining ‘out-of-tree’ nodes. The algorithm accounts for line capacity constraints when
updating the distances. As lines reach maximal capacity, any reraining ‘out-of-tree’
node’s distance to the tree will not represent its shortest path to the tree. Therefore,
connections made at the end of the process will be sub-optimal. The Modified Prim
Algorithm typically gives worse solutions than those provided by the Esai-Williams
Algorithm.

3.2.2 The Bus Topology. Although the bus architecture resembles a loop (described in
the next subsection) in which one of the ends s not connected to the concentrator, it is
actually a tree topology where the number of child terminals is constrained to 1. Figure
3 illustrates a bus topology.

3.2.3 The Loop Topology. A loop structure is depicted in Figure 4. A line is a loop
when its terminals possess a parent linking it into the network, and only one child.
Furthermore, the first and last terminals in the structure must be linked to the central
site thus creating a circuit.

The reliability of loops is better than that of trees. Although the cost 15 usually
higher, the reliability issue often warrants the extra expenditure needed in wiring. ‘All
traffic ordinarily travels in one direction around the loop, say, clockwige If, however, a
link breaks, the terminals may have the capability of recognizing this and of temporarily
using the remaining portion of the loop in the other direction. This can require a manual
switchover and some rearrangement (usually at the software level; at the central site’
([21], p.196). Loop structures are usually used in local area network inplementations
that must be highly connected for the sake of reliability.

Loops may be created in two ways. The first approach consists of running an algo-
rithm that solves the CMST. Furthermore, if the resulting subtrees are considered only
as partitions, a Travelling Salesperson (TSP) algorithm may be used for each partition
to find the least lengthy tour starting and ending at the root of the tree. In such a
situation, the nodes in each partition are equivalent to the cities the salesperson must
visit exactly once before returning home. The second approach consists of viewing the
problem as a Vehicle Routing Problem (VRP). It consists of ‘finding a set of routes for
a fleet of vehicles which have to service a number of stops from a central depot. It is
assumed that every vehicle has the same capacity and the number of vehicles is unlim-
ited. The vehicles depart and arrive at the depot. The demand quantity at each stop
is known in advance and is deterministic. No single demand quantity exceeds vehicle
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capacity.’ ([4], p. 480). It can be added that the total demand quantity assigned to a
given vehicle is no more than the capacity of the vehicle; the number of stops of each
route is limited and one is seeking to minimize the overall distance that all the vehicles
must cover. A heuristic such as the Clarke-Wright algorithm [10] can be used to obtain
an initial solution to the VRP. This algorithm starts by considering each terminal on a
separate loop. The algorithm then combines loops when the mergers offer a decrease in
cost. Similarly to the Esaii-Williams algorithm, a trade-off is associated with link (7, 7)
given by t;; = C;; — Ciyg — Cjo, where Cjg and Cjp denote the cost of connecting termi-
nals j and ¢ from the central site ‘O’ respectively, while C;; represents the connection
cost between terminal 7 and terminal 5. For more information on the VRP, we refer the
reader to [24].

4. COMPLEXITY OF
CENTRALIZED NETWORK DESIGN PROBLEMS.

In [27]|, Mirzaian and Steiglitz showed that almost all of the ‘star-star’ concentrator
location problems are strongly NP-complete. However, if the capacity of the concen-
trators is less than two or all the connection costs are equal (¢;; = ¢, for all 7 and j),
then these problems are solvable in polynomial time. They showed that except for these
two cases, the concentrator location problems are NP-complete. In general, terminal
assignment problems are also considered difficult. However, if all terminals have the
same weight (w; = w, for all i), they can be solved in polynomial time; otherwise they
are NP-complete [2]. As for the terminal layout problem, Papadimitriou [28] has shown
that the CMST is NP-complete when 2 < @ < n/2, where @ represents the number of
terminals a line can carry.

5. SIMULATED ANNEALING.

There are basically two types of solutions for the problems discussed above: (1) ezact
solutions, which are limited to small-size instances because of the inherent difficulties of
this class of problems as recognized by the mathematical and computer science commu-
nity, and (2) suboptimal solutions obtained using heuristic techniques. Heuristics have
the advantage of requiring less computer running time while offering solutions that
sometimes are very close to a global optimum. However, solutions obtained by sim-
ple local-search (usually of the Greedy type) represent only local optima. Well-known
heuristics for the Concentrator Location and Terminal Assignment problems are the
Greedy Algorithm with tradeoff , the ADD and DROP algorithms, and the COM algo-
rithm, that are all described in sections 3.1.1 and 3.1.2. While for the Terminal Layout
Problem, we find such heuristics as the Esati- Williams Algorithin (see 3.2.1) for creating
tree and bus structured lines, and the Clarke- Wright Algorithm (see 3.2.3) for laying
out loop topologies. We refer the reader to [21) and [11], for a detailed explanation of
these and other algorithms.

Simulated Annealing was first introduced to model the physical annealing of solids
when Metropolis et al. [26] simulated a small displacement in individual atoms for each
iteration of the simulation while monitoring the change in system energy the displace-
ment produced. When the change corresponded to a decrease in energy, the resulting
change was accepted, while increases in energy were only accepted with a certain prob-
ability. At each temperature level, a sufficiently large number of iterations were realized
to attain thermal equilibrium, and the acceptance function guaranteed that the system
was governed by the Boltzmann distribution.

Kirkpatrick et al. [22], and Cerny [7] independently proposed that the Simulated
Annealing process could be applied to optimization problems by comparing the energy
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states of the solid to an objective function to be minimized. In the analogy, ‘the different
states of the substance correspond to different feasible solutions to the combinatorial
optimization problem, and the energy of the system corresponds to the function to be
minimized.” (12], p. 273).

In any implementation of the algorithm, an annealing schedule must be specified.
This schedule stipulates the initial temperature setting (7p), the reduction rate (a )
in temperature (T) (where 0 < a < 1), the repetition (k) which denotes the number
of changes to be attempted at each temperature level, and finally a stopping criterion
referred to as epsilon’ and denoted by ‘¢’ in order to terminate the program. The
general Simulated Annealing Algorithm can be described in pseudo-Pascal as follows:

Initialize the parameters (k, Tp,« , and € ); Set T = Tp.
Repeat
For m:=1to k do
begin
Generate a neighbour state (current state 1 — new state j)
Calculate the change in cost (A Cost = Cost ¢ — Cost j)
If Cost is < 0 then make j the current state

Else

If exp(—A Cost /7T') > random [0, 1[ then make j the current state
end,
T Freivee S

Until T < ¢ (until the stopping criterion is reached);

The process involves accepting or rejecting a sequence of k neighbouring states at each
temperature level (T'), while dropping the temperature gradually at a rate of until the
temperature reaches the stopping criterion. For the new state j to be a neighbour state
of 7, it must be reachable in exactly one move form state 7, and it must be reversible.
Furthermore, if S; denotes a set of neighbour states reachable in exactly one move
from 1, then any state of S; must be capable of being reached from any other in some
number of moves. At high temperature levels it is possible for SA to accept new states
(i.e., solutions) that produce relatively large increases in cost. As the system cools,
the function becomes more likely to accept states generating small increases in cost
rather than larger ones. When the temperature approaches zero, the majority of cost
increasing moves are rejected. In other words, temperature influences the probability
that a transition to a higher cost solution occurs.

Its potential to accept occasional increases in the cost function is what differenti-
ates SA from simple local search algorithms because its trajectory includes migrations
through sequences of solutions (including local extrema) in search of the global opti-
mum. Contrarily to simple local search (greedy) algorithms, the SA’s sporadic increases
in the cost function allow it to ‘jump out’ of local minima traps.

6. ALGORITHMS AND RESULTS.

The schedules for our programs were arrived at by comparing the results obtained from
various combinations of parameters settings on test problems of various sizes. From
this process of trial and error, annealing schedules were determined for the concentra-
tor location, terminal assignment, and terminal layout problems. Annealing schedules
offering the most savings for each problem size considered were selected and utilized to
compute the results given in this section. All programs were coded in Delphi™ and
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6.1 Concentrator Location.

For both the Concentrator Location and Terminal Assignment Problems, all experi-
ments were carried out on a PC with an Intel Pentium 75 MHy processor. The initial
solution used by our algorithm for the concentrator location problem is calculated by
the ADD Algorithm described in 3.1.1. Neighbor solutions for the concentrator loca-
tion problem are generated in three ways. The first consists of considering the effects of
‘dropping’ a concentrator chosen at randomn from the current solution. Consequently,
all terminals that were connected to that concentrator are reassigned to the remain-
g concentrators based on their availability and proximmty. Note that for ‘dropping’,
if a terminal cannot be connected to any of the other concentrators due to capacity
constraints, a line will have to span to the central computer in order to connect the
terminal into the network. The second method consists of ‘adding’ a concentrator at
one of the possible but unoccupied randomly chosen concentrator locations. Once again,
reassigning the terminals in the network is necessary in order to evaluate whether the
added concentrator provides a better solution. Finally, the third neighbor generating
method is a combination of the previous two. A concentrator that 1s part of the current
solution 1s chosen at random and dropped while another concentrator is added into the
network at a randomly selected but unoccupied location. Our algorithm selects the best
of the possible three neighbor solutions. It should be noted that other neighbour gen-
eration methods were tried but that randomly choosing each of the two concentrators
to be added and dropped gave us the best results. For example, an alternate procedure
considered for dropping concentrators was to select the least significant concentrator
(i.e., the concentrator that has the least contribution in lowering the configuration cost)
where the contribution of each concentrator was calculated as Q; = 3, ;) (ci—cy;) —d,
(where ¢; = cost of connecting terminal 7 to its best available concentrator other then
concentrator j, ¢;; = cost of connecting terminal i to concentrator j, d; = cost of
locating concentrator j, and I(j) represents all the terminals currently connected to
concentrator j).

6.2 Results for the Concentrator Location Problem.

Two experiments were conducted for the Concentrator Location Froblem. First, our
algorithrn was compared to the results of the ADD heuristic which was used to calculate
the initial solutions. In addition, we also compared the performance of our program to
the results generated by the program called SITATION written by Daskin [11] for solving
uncapacitated facility location problems. For the capacitated problem, data sets were
generated at random as zy-coordinates indicating the location of the central computer,
n terminals, and m potential locations for the concentrators. We assumed that the
concentrators to be located were all identical in terms of capacity and installation cost.
Therefore, the cost for locating a concentrator av site j was deterimined only by its
distance to the central computer. The capacity of each concentrator was assumed to
be 12, and the weight of each terminal was randomly generated between 1 and 2. The
cost of a high capacity line was assumed to be twice the price of a low capacity line.
Moreover, the first half of the terminal sites were considered as the potential sites of
the concentrators to be located.

In terms of (n, m), the test files were of size (100, 50), (200, 100), (300, 150), and
(400, 200). For each one, five different data sets were created. The improvements over
the ADD algorithm are given in Table 1.

Finally, we compared our program with SITATION. As mentioned above, this pro-
gram solves a number of uncapacitated facility location problems. One of these is the
uncapacitated facility location problem (UFCLP). This problem is very similar to the
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Problem Size | Average Simulated
improvement | Annealing
over the Average
ADD time

algorithm (%) | (in seconds)

(100, 50) 2.83 63
(200, 100) 4.80 500
(300, 150) 3.41 1849
(400, 200) 5.12 5116

Table 1: Improvement over the ADD algorithm.

SITATION SITATION Simulated
Exchange Exchange Annealing
(ADD-Based) | (DROP-Based) >3
Average Average Average Average
Improvement Improvement | Improvement Time
(%) (%) (%) (secs)
2.86 2.85 3.42 1194

Table 2: SITATION and Simulated Annealing Improvements over the ADD Algorithm.

Concentrator Location Problem, where concentrators act as the facihities and the termi-
nals act as the demand nodes. The only difference, it seems, 1s that the centre does not
exist in the UFCLP. We discovered however, that by setting the connection cost between
concentrators and the central computer to ‘0, our program could mimic this charac-
teristic. In addition, the capacity of each concentrator was set large enough to handle
the uncapacitated nature of the UFCLP. Moreover, all demand nodes were considered
as the potential location of the facilities.

Ten different data sets of size (150, 150) were randomly generated in order to make
the comparison. This size limitation was not intentional, instead, it simply reflected
SITATION’s limitations in problem size. The distances between the network nodes
were randomly generated between 10 and 150, while the demand (1.e., weight) of each
terminal was randomly set between 10 and 25. In addition, the fixed cost for installing
a facility (i.e., a concentrator) was randomly generated between 500 and 1000.

The SITATION program provides several algorithms for solving a problem. All of
them were applied to the test data in order to get the best one. The two exchange-
based algorithms provided the best results. These two algorithms differ only in the
manner in which they calculate the initial solution. The first 15 based on the ADD
algorithm, whereas the second us= the DROP algorithm to obtain an initial solution.
We then compared these results 1o our SA algorithm. The suminary of the comparison
1s presented in Table 2.

6.3 Terminal Assigninent

Forrtheterminalvassignmentsprobiemythenmnitial solution for our Simulated Annealing
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Average improvement | Average 1"
Problem Size | over greedy algorithm Time
with tradeoff a (%) (secs)
(100, 20) 4.02 21
(200, 40) 5.51 126
(300, 60) 4.79 330
(400, 80) 6.99 698
(500, 100) 6.22 1087

Table 3: Improvement over the modified greedy algorithm.

algorithim was calculated using the modified greedy algorithin 21} also known as the
‘greedy algorithm with tradeoff o’ [2] discussed in 3.1.2. Our terminal assignment algo-
rithm considers both ‘simple moves’ (i.e. reassigning a terminal from one concentrator
to another) and ‘swap moves’, consisting of exchanging two terminals between two dif-
ferent concentrators. The algorithm first selects two random concentrators where at
least one of the two has a minimum of one terminal connected to it. When both con-
centrators are servicing at least one terminal respectively, the algorithm selects a move
based on the best savings that can be attained. If only one of the two concentrators has
terminals assigned to it then the ‘swap move’ option is ignored. If there are no actions
that can save money, the move with the least cost increasing effect is considered for
selection by the Simulated Annealing program. For simiple moves, a terminal can only
be reassigned from one concentrator to another if the latter has sufficient capacity to
accept it. Invariably, the possibility of swapping only occurs if both concentrators can
accommodate the other’s terminal.

6.4 Results for the Terminal Assignment Problem.

For the Terminal Assignment Problem, we compared the results obtained from our
algorithm to those given by the modified greedy algorithm Our test data consisted
of 25 randomly generated files of zy-coordinates representing the locations of a central
computer, n terminals, and m concentrators. In terms of (n, m), the test data included
5 files of size (100, 20), 5 of size (200, 40), 5 of size (300, 60), 5 of size (400, 80), and 5
of size (500, 100). Capacities for all concentrators were uniform and equal to 12, while
terminal weights varied between 1 and 3. Improvements were obtained for all problems
and are shown in Table 3.

6.5 Terminal Layout

For the terminal layout, the Simulated Annealing algorithm was run on a portable
computer with a Cyrix chip running at 200MHz. All results and execution times are
reported herein.

6.5.1 Tree Topology. The initial solution for the CMST is obtained with the Esau-
Williams algorithm described in 3.2.1. The neighbour solutions are obtained by manp-
ulating the order in which the Esaii-Williams algorithim links terminals to one another
to create multipoint lines. This technique is related to algorithms of heuristic repe-
tition first developed by Karnaugh [19] and Kershenbaum, Boorstyn, and Oppenheim
[20]), which are known in the literature as Second Order Greedy Algorithms (SOGA).
However, to our knowledge, we are the only ones to have embedded such a technique
within a Simulated Annealing Algorithm in order to generate neighbourhoods. As the
EsaiiWilliamsralgorithimpproceedspsubtrees may fill up by reaching the maximum line
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Figure 5: The Esau-Williams Solution Showing a Capacitated Minimum Spanning Tree.
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Table 4: A cost matrix used to calculate the Esau-Williams solution for a CMST problem.

Iteration | Connection Savings
From | To
1 5 4 30 =48 — 18
2 3 4 24=30-6
3 2 1 16 =26 — 10

Table 5: The iterations taken by the Esau-Williams algorithm to arrive at a solution.

weight constraint (Wmaz) or a node may not accept any additional child nodes with-
out violating the maximum number of terminals per line constraint. From this point
on, the solution will start degenerating away from a minimum spanning tree (MST) be-
cause the algorithmn is unable to make the best multipoint connections for the remaining
terminals. Typically, links created towards the end of the run tend to be non-optimal.

By forcing the Esai-Williams algorithm to link a node before it would normally be
considered for connection, it is possible to generate a neighbour solution with a lower
cost. To illustrate the point, consider Table 4 showing a symmetrical distance matrix
for a problem with Wmax equal to 3 where all the terminal weights are equal to 1. The
Esaii-Williams solution is shown in Figure 5. Imtially, the algorithm starts with the star

irectly to the central node ‘0’ with a cost
: A m I
" Y
o A
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Figure 6: The Modified Esau-Williams Solution Showing a Capacitated Minimum Spanning
Tree.

[teration Connection Savings
From To
1 5 4 | 30 =48 -18
2 6 (modification) | 4 | 16 =35 —19
3 3 1 120=33-13
4 2 1 | 16 =26 - 10

Table 6: The iterations taken by the modified version of the Esau-Williams to arrive at a
solution.

of 185 (13+ 26 + 33+ 30 - 48+ 35). With each iteration of the Esati-Williams algorithm
a new link is created merging terminals into components. By saving the order in which
the algorithm links (or merges) one terminal with another, a hierarchy of connections
can be recorded. For this example the Esaii-Williams connactions are shown in Table 5.

After iteration 3 in Table 5, the algorithm cannot keep merging the terminals with-
out violating the line capacity constraint (Wmax = 3). The Esat-Williams algorithm,
therefore, stops executing and returns a solution of 115 (185-30-24-16). Terminals 1, 4,
and 6 remain directly connected to the centre (central node 0).

However, the reader should note that replacing the link {6-0) by a link from terminal
6 to terminal 4 would yield an additional decrease in cost but cannot be done without
violating the Wmaz constraint (see Figure 5).

We suggest that by forcing the Esaii-Williams algorithm to consider terminal 6
higher up in the hierarchy of connections, a lower cost solution can be obtained. The
steps taken by the modified version of the Esaii-Williams algorithm can be illustrated
in Table 6. The modified Esaii-Williams solution obtained is shown in Figure 6.

Table 6 shows that at iteration 3, a connection from terminal 3 to terminal 4 would
now violate the constraints, therefore terminal 3 is linked to terminal 1. This modified
version of the Esaii-Williams algorithm returns a cost of 103 (185-30-16-20-16) or a
saving of 12 over the original Esaii-Williams solution.

To understand how we obtained neighbour solutions, consider Table 7 showing an
array representing therconiiectiontiierarchy of a solution for a problem consisting of 10
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From terminal | 7 (S QA T 1 ot 9 2 L 8 - S
To terminal 4 F2:0:34101218F0[0|0 | 0

D
SN

Table 7: The connection hierarchy showing the Esau-Williams solution for a problem con-
sisting of 10 terminals.

From terminal | 7 | 6 ¢ Jale 0 B 1 i i 0 O
To terminal A4 2SS0

=S

Table 8: lllustration of Step 2 for the modified Esau-Williams algorithm.

-J
U=}
(V)

From terminal 10
To terminal Gl g it By

Table 9: lllustration of Step 3 for the modified Esau-Williams algorithm.

terminals. The array represents the creation order of the links between the terminals.
With the Esai-Williams solution, the hierarchy of connections in the array represents
(from left to right), in terms of savings, the best feasible connections obtained by the al-
gorithm. The bold numbers inside the array represent the links (from the star topology)
that could not be replaced due to the constraints imposed on the CMST.

Our neighbour solution generation process for a hierarchy array of size n (where n
equals the number of links, including those from terminals to the central computer) was
performed as follows:

Step 1. Select a number of modifications (M) that will be made to the Esaii-
Williams algorithm (where M >3 and M < 0.10-n if n > 30 ). In this example,
M=3

Step 2. In the first half of the connection hierarchy of the current solution, select
M consecutive connections starting at m1, where m1 represents the leftmost con-
nection chosen. In our example, m1 = 2 (or position 2 in the array). The bold
numbers in Table 8 represent the M consecutive connections.

Step 3. Starting at m1, randomly consider terminals to the right of m1 as replace-

ments for m1,m1 +1,...,m1+ M —1 (from Table 8, potential terminals include
6,4,9, 1,3, 2, 5,8, and 10). A possible result of this random process is given in
Table 9.

Step 4. Generate a number p of neighbour solutions (i.e., the neighbourhood of
the current solution) by:

(i) Keeping the links in the current solution up to ml — 1, then
(i) Forcing the Esaii-Williams algorithm to consider the three terminals that
replace m1,m1 +1,...,ml + M1 for least cost connection into the network,
and finally,
(iii) Allowing Esaii-Williams to resume link selection normally afterwards.

Step 5. Select the least costly solution obtained in step 4.
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Problem Esaii- Tabu Execution | Simulated Execution
Instances Williams | Search | time for TS | Annealing | Time for SA
secs Secs
ted0_1, Wmazx = 3 1215 1192 102 1196 642
ted02, Wmax = 3 1144 1117 44 1122 AT
ted0_3, Wmazxz = 3 1146 1115 34 1119 645
ted0_4, Wmazx = 3 1156 1144 o 1146 621
ted0.5, Wmaz = 3 1147 1115 55 1123 608
ted0_1, Wmaz = 5 857 875 64 857 274
ted02, Wmazx = 5 827 812 44 809 235
ted0_3, Wmaz = 5 820 822 39 807 270
ted04, Wmaz = 5 854 835 68 837 277
te40.5, Wmax = 5 816 796 46 794 263
ted0_1, Wmaz = 10 649 614 46 633 3
ted0_2, Wmaz = 10 613 591 64 573 182
ted0_3, Wmaz = 10 596 591 45 583 104
ted0_4, Wmaz = 10 638 608 69 600 105
ted0_5, Wmaz = 10 597 572 2 581 93

Table 10: Results for CMST unit demand problems consisting of 40 terminals where the
central vertex is located at the end of the vertex scatter.

As we have demonstrated in this section, the modification to the Esaii-Williams al-
gorithm proposed herein may at times return a lower cost solution. The Simulated
Annealing program into which this neighbourhood generation process is embedded ac-
cepts any lower cost solution identified 1n step 5 automatically, but also accepts higher
cost solutions with a certain probability.

6.5.2 Results for the Tree Topology.  The Simulated Annealing programs for the tree
topology were tested on two CMST data sets available from the OR-library of Beasley
(e-mail: o.rlibrary@ic.ac.uk). The first consists of data with unit demand. The results
for problems te40.k, te80.k, tc40k, and tc80k (k =1, ., 5) are given in Tables 10, 11,
12, 13. Problems ‘te’ refer to matrices where the central vertex (i.e, a concentrator or
the central computer) is located at the end of the vertex scatter. and problems ‘tc’ refer
to data where the central vertex is at the center of the vertex scatter. The second data
set includes non-unit demand problems cm50_rv and em100_rv (where v = 1,.. ., 5), and
results are reported in Tables 14 and 15. Included for all these datasets, are the results
from the Esaii-Williams Algorithm and those of Sharaiha et al. [29] obtained with a
tabu search heuristic. Execution times for the Esaii-Williams algorithin are not reported
since solutions typically took less than a second to be calculated. All execution times
are in seconds and those reported herein for the Tabu Search algorithm were taken from
Sharaiha et al. [29' who ran their algorithm on a Silicon Graphics Indigo workstation
(R4000, 100MHz).

When compared to the Tabu Search algorithm, our Simulated Annealing algorithm
did better in terms of cost on smaller sized non-umt demand problems (i.e., ‘cm_50’
problems) and on unit demand problems where the central vertex was located at the
end of the vertex scatter (i.e., ‘te’ problems). Execution times for both the Tabu Search
and the Simulated Annealing algorithms are somewhat comparable. Our Simulated An-
nealingralgorithmytypicallystookdonger to execute for problem mstances were maximum
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Problem Esaii- Tabu Execution | Simulated Execution
Instances Williams | Search | time for TS | Annealing | Time for SA
secs secs
te80_1, Wmazx = 5 2592 2570 419 2559 2151
te802, Wmaz = 5 2631 2574 410 2602 2655
te80_3, Wmazxz = 5 2723 2741 254 2665 2430
te80.4, Wmazxz = 5 2630 2672 227 2604 2877
te80.5, Wmaz = 5 2595 2557 205 2514 2305
te80_1, Wmax = 10 1735 1688 205 1709 813
te80_2, Wmaz = 10 1787 1678 229 1697 903
te80_3, Wmaz = 10 1828 1775 245 1736 902
te80_4, Wmaz = 10 1691 1906 224 1656 813
te80.5, Wmaz = 10 1731 1685 258 1633 725
te80_1, Wmaz = 20 1336 1311 378 1285 351
te80_2, Wmazxz = 20 1295 1266 254 1248 329
te80_3, Wmazx = 20 1340 1329 276 1308 353
te80_4, Wmazx = 20 1349 1337 258 1315 385
te80.5, Wmazx = 20 1271 1259 259 1259 306

Table 11: Results for CMST unit demand problems consisting of 80 terminals where the
central vertex is located at the end of the vertex scatter.

line capacity was set to a relatively small number (i.e., Wmax = 3 for ‘te’ and ‘tc¢’
problems and Wmax = 200 for ‘ciry’ problems). However, when the value of Wmax in-
creased, our Simulated Annealing algorithm had comparable or shorter execution times
than those reported for the Tabu Search Algorithm.

We note that Amberg et al. [1] also have reported results using Simulated Annealing
for this problem. However, the manner in which the results have been reported (average
relative improvements over Esaii-Williams and best results obtained from several runs
with different parameters) makes 1t difficult to perform a meaningful comparison.

6.5.3 Bus and Loop Topologies. Similarly to the tree topology, the initial solution
for the bus topology was generated by the Esaii-Williams algorithm. However, terminal
nodes in the solutions were restricted to having only one child node. For the loop
topology the Clarke-Wright algorithm [10] was used to obtain initial solutions. The
process of generating a neighbour solution for these topologies begins by selecting 2
terminals at random denoted 7% and 7'j,. By changing the link(s) that connect each
of these two terminals to their respective lines we can consider two simple ‘moves’
and one pairwise ‘interchange’. Of course, the terms ‘moving’ and ‘interchanging’ is
figurative since the terminal locations are geographically fixed. The process is actually
one of including or excluding terminals from lines by adding and dropping the links that
connect them to their respective lines. Once a pair of terminals 13 selected, up to three
potential neighbours can be generated by evaluating the change in total distance (cost)
of:

1. moving terminal 7% to another line,
2. moving terminal 7 to another line, and
3. swapping both terminals.

Each new configuration produced in one of the ways described above that does not
violatenthentopologyrornthepmaximumplinesweight (Wmax) and maximum number of
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Problem Esaii- Tabu Execution | Simulated | Execution
Instances Williams | Search | time for TS | Annealing | Time for SA
secs secs
tcd0_1, Wmaz = 3 TiGY 744 39 761 253
tcd0_2, Wmaz = 3 749 728 42 735 244
tc403, Wmaz = 3 728 722 43 725 229
tc40_4, Wmazx = 3 804 793 39 782 246
tc40.5, Wmaz = 3 760 741 31 745 224
tc40_1, Wmazx = 5 595 590 37 595 121
tc402, Wmazx = 5 588 585 40 583 116
tc40.3, Wmazx = 5 602 577 98 585 104
tcd04, Wmaz =5 645 618 41 623 113
tc40.5, Wmazx = 5 615 602 57 611 117
tcd0_1, Wmaz = 10 516 500 36 506 63
tc40_2, Wmaz = 10 505 490 33 490 65
tc40_3, Wmazx = 10 517 500 36 508 66
tc404, Wmaz = 10 524 513 36 512 66
tc40.5, Wmaz = 10 540 504 38 504 70

Table 12: Results for CMST unit demand problems consisting of 40 terminals where the
central vertex is located at the center of the vertex scatter.

Problem Esaii- Tabu Execution | Simulated | Execution
Instances Williams | Search | time for TS | Annealing | Time for SA
secs secs
tc80.1, Wmazx = 5 1182 1133 417 1163 852
tc80.2, Wmax =5 1170 1124 301 1146 763
tc80.3, Wmaz =5 1146 1095 395 1118 680
tc80.4, Wmaz = 5 1160 1108 214 1132 761
tc80.5, Wmaz = 5 1344 1324 205 1832 750
tc80_1, Wmaz = 10 931 901 244 915 329
tc802, Wmaz = 10 917 886 201 897 321
t¢80.3, Wmaz = 10 912 880 273 899 369
tc80.4, Wmazx = 10 924 874 1124 903 327
t¢80.5, Wmax = 10 1092 1005 280 1038 365
tc80_1, Wmaz = 20 856 834 246 842 265
tc80-2, Wmazx = 20 856 820 220 832 265
tc80.3, Wmaz = 20 852 828 199 836 269
tc80-4, Wmax = 20 860 820 209 830 289
tc80.5, Wmazx = 20 969 916 232 941 276

Table 13: Results for CMST unit demand problems consisting of 80 terminals where the
central vertex is located at the center of the vertex scatter.

er. Further reproduction prohibited without permission,




SIMULATED ANNEALING

291

Problem Esati- | Tabu | Execution | Simulated | Execution

Instances Will- | Search | time for | Annealing | Time for

iams TS secs SA secs
cmb0.rl, Wmazxz = 200 | 1135 1180 61 1118 475
cmb50.r2, Wmazxz = 200 | 1023 1061 76 1001 334
cmb0.r3, Wmaz = 200 | 1249 1229 74 1205 429
cmb50.r4, Wmazx = 200 | 834 311 119 801 215
cmb0.15, Wmaz =200 | 970 993 66 949 288
| cmb0rl, Wmaz =400 | 731 726 57 707 121
| cmb0.12, Wmazx = 400 | 642 680 59 639 102
| cm50.13, Wmaz = 400 | 741 780 61 739 118
cmb0.r4, Wmazxz =400 | 583 617 59 572 70
| cmb0.15, Wmaz = 400 | 643 628 67 615 93
| cm50.r1, Wmaz = 800 | 550 | 544 58 516 53
| cmb0.r2, Wmaz = 800 | 531 542 66 522 35
| cm50.13, Wmaz = 800 | 565 554 58 541 64
| cm50.r4, Wmaz = 800 | 514 472 52 480 45
cmb0.rd5, Wmax =800 | 515 501 56 501 5l

Table 14: Results for CMST non-unit demand problems consisting of 50 terminals where
the central vertex is located at the end of the vertex scatter.

Problem Esaii- | Tabu | Execution | Simulated | Execution
Instances Will- | Search | time for | Annealing | Time for
iams TS secs SA secs

cm100.r1, Wmaz = 200 728 551 1154 682 2149
cm100r2, Wmaz = 200 | 800 616 747 695 2529
cml100x3, Wmaz =200 | 750 608 4T 697 2274
cml100r4, Wmazx = 200 | 625 445 482 544 1732
cm100x5, Wmazxz = 200 | 637 442 821 571 1918
cm100r1, Wmazx = 400 | 375 259 431 293 775
cm100.r2, Wmazx =400 | 376 278 399 337 919
cml100.r3, Wmaz =400 | 363 238 793 312 799
cm100.r4, Wmazx = 400 | 322 223 501 274 654
cml100.r5, Wmax =400 | 323 227 436 270 733
cm100r1, Wmax = 800 | 255 182 608 228 523
cm100x2, Wmazx = 800 | 235 179 396 198 510
cm100.r3, Wmazx = 800 | 238 175 351 204 535
cm100r4, Wmax = 800 | 248 183 356 220 521
cm100_r5, Wmaz = 800 | 232 187 350 210 565

Table 15: Results for CMST non-unit demand problems consisting of 100 terminals where
the central vertex is located at the end of the vertex scatter.
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+ : Removed Link

Figure 7: Moving terminal Ti to line J.

Concentrator ™~ ’/ ~ -~

— = — : Added Link

—-x—— : Removed Link

Figure 8: Swapping terminals 7% and T}

terminals per line constraints, is considered to be a valid neighbour solution. Figures
7 and & illustrate how neighbour solutions can be created by manipulating the links
connecting the terminals.

6.5.4 Results for the Bus Topology.  Data sets representing 50, 100, 150, and 200 ter-
minals were created. In all, 20 sets were produced, 5 in each size category. All data sets
were generated at random to represent the ry-coordinates of the terminals relative to a
concentrator positioned at (0,0). In addition, each terminal ( 77) was randomly assigned
a weight ranging between 1 and 10. The ‘maximum line weight’ constraint (Wmax) was
set to B0 for problems consisting of 50 and 100 termunals, while for problems of 150 and
200 terminals, Wmax was set to 100. Thus, on average we would expect the resulting
bus topologies to range between 10 and 20 termunals per line (Wmax/averagew;) for
the problems consisting of 50 and 100 terminals, and to range between 30 and 40 termi-
nals per line for problems consisting of either 150 or 200 terminals. The bus topology
problemsyweresfurtherconstrainedsby 1mnposing a limit on the maximum number of ter-
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Problem | SA Average improvement | Average
Size over the Esati-Williams time

; (%) (secs)

| (50) 3.89 10

3 (100) 5.68 15

| (150) 5.68 70

| (200) 5.13 81

‘ Table 16: Improvement over the Esau-Williams algorithm.

|

|
Problem Best Standard | TABUROUTE | Simulated | Simulated
Instances | Reported TABU- Execution Annealing | Annealing

| Result = | ROUTE Time Execution

i Results (mins) Time

(min:sec)

cb0.dat 524.61* 524.61 6.0 524.61 2:13
c75.dat 835.32* 835.77 53.8 844.68 3:26
cl00a.dat | 826.14** 829.45 18.4 830.78 6:15
c100b.dat 819.56* 819.56 16.0 819.56 6:25
¢120.dat 1042.117* 1073.47 22.2 1046.72 22:50
c150.dat | 1029.64*** | 1036.16 58.8 1046.81 12:53
c199.dat 1300.89** | 1322.65 90.9 1351.39 16:16

* Result obtained by both [16] and [30] using multiple runs.
** Result obtained by [30] using multiple runs.
*** Result obtained by [16] using multiple runs.

Table 17: Simulated Annealing results as compared to Capacitated Vehicle Routing problem
benchmarks described in Christofides et al. [9].

minals any line could carry, these were a maximum of 10 terminals per line for problems
of size 50 and 100, and a maximum of 15 terminals for problems of size 150 and 200.
Table 16 includes the percentage of improvement for each problem size as compared to
the Esaii-Williams algorithm, and the average SA running time.

On average, for all problem sizes considered, the SA algorithm outperforms the
Esaii-Williams algorithm by 5.10 %.

6.5.5 Results for the Loop Topology. The data sets used for the loop topology were
obtained at: http://www.idsia.ch/ “eric/problemes.dir/vrp.dir /taillard dir/.

These problems were originally described in [9]. The problems range in size from 50 to
199 terminals (cities) in addition to the central site (depot). The results from our Simu-
lated Annealing algorithm are compared to the ‘best results’ found thus far for the same
problems. Moreover, we compare our results to those obtained using TABUROUTE re-
ported in {16]. The comparisons are presented in Table 17. The results for the Simulated
Annealing were obtained on a portable computer with a Cyrix chip running at 200MHz
and those from TABUROUTE on a Silicon Graphics workstation running at 36 MHz
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(L8 Contiguration Layo nifial Solution =121 %]
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Configuration Cost  : 3887
Output Number ¢ 0fini)

Figure 9: An Example of the Graphical Output Capabilities of our Software Package

When compared to the Standard TABUROUTE results, our algorithm outperformed
it only once (for the c120.dat problem). We believe that this may be due to the small
number of test problems that we used to establish our annealing schedules. For each
problem size, we randoinly generated only 5 test problems. Furthermore, for each set of
test problems, we manipulated the Simulated Annealing parameters no more than seven
times and chose the parameter combination that offered the greatest average savings
for all 5 test problems. We believe that with additional test problems and parameter
manipulation, our program may provide better results that match or even surpass those
reported by {16]. Nevertheless, our Simulated Annealing algorithm seems promising, the
results indicate that some of our solutions (i.e., ¢50.dat and ¢75.dat) match the cost of
the ‘best reported results’ obtained, as reported by 30 and 16

7. CONCLUSION.

We developed the prototype of a Decision Support System that allows the user to simu-
late various scenarios in a user-friendly environment and to obtain quick solutions with
a graphical display, while improving on the quality of the solutions that are provided
by well-known heuristics commonly used in the Telecommmunications industry.

Our results are competitive with some of the best currently available solution meth-
ods. Moreover, we are certain that additional computational experiments using other
annealing schedules than the one we have tried could increase the quality of our SA
algorithms.

Our programs were designed to run in the Windows environment. Special attention
was given to make them intuitively easy to use and capable of loading data in either
ry-coordinate or cost matrix formats. Furthermore, the graphical capabilities of our
programs offer centralized network designers a means of visually assessing the solutions
obtained. An example is given in Figure 9. The large node found at the centre of the
display represents the central computer.
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